Convolutional Neural Networks - CNN

The Power of Deep Learning for Image Recognition
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Top growing technologies in 2022

Wider context

According to the latest ifiCLAIMS report’, the fastest growing technology was:

» AUTONOMOUS DRIVING

» modern EV cars have 20+ sensors and cameras

» 9th place: Machine learning

Aalborg University Business
School

23

Thttps://www.ificlaims.com/rankings-tech-growth-2022.htm



WEW GRg,
© 1,

(¥

Q
o, @
R yniv®

BRE,
"l 4,
2

A"

@,

Why good vision is important?

Wider context

By far the most important organs of sense are our eyes.

What per cent of all impressions do we perceive by means of our sight?

» 80%

As vision plays a crucial role in our daily lives, CNNs have made it possible for
machines to mimic human vision and process images effectively, improving

efficiency and accuracy in various fields.
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How computers "see"?
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Computer vision

How computers "see"?

Blue component
Image Plane

Green component
image Plane

Pixel,
[255,0, 255]

Pixel, =[127,255,0]

Red component image Plane
Pixel of an RGB image are formed from the corresponding pixel of the three component images
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How humans recognize objects?

Computer vision

How do we recognize a car?
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Is this electric car?
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CNN architecture .
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e CNN model

[ —sicyeLe

SOFTMAX

FULLY
CONVOLUTION + RELU  POOLING \FLATTEN CONNECTED

CLASSIFICATION

INPUT CONVOLUTION + RELU POOLING

FEATURE LEARNING
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Visual process

RELU RELU
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Convolution layer
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Convolution filter
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Operation Filter
o o o
identity o 1 0
o o o
Convolution layer
1 o 1
o o o
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Edge detection 1 4 1
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Box blur 1
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Convolution layer .

Wider context
Computer vision
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CNN mode
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Downsampling
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Fully connected layers

Q Flattening

First fully connected layers take the output of the previous layers, “flattens” them
and turns them into a single vector that can be an input for the next stage.

Fully connected output layer gives the final probabilities for each label.
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R-CNN

R-CNN: Regions with CNN features

warped region

= 1
%\I > person‘? yes.
] |

2. Extract region 3. Compute 4. Classify
proposals (~2k) CNN features regions

1. Input
image
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R-CNN

e R-CNN
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Dataset CIFAR-10 ((( .

» 60.000 images

» RGB (3 channels) Coding example
» 32x32 pixel images

» 10 classes (5000 train 1000 test for each class)
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Dataset CIFAR-10

deer bird ship cat dog dog Computervision
CNN model
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Results

Model Name Accuracy of the network:

€6, b4, r00.1 51.69%
e8, b4, r00.1 54.70%
e10, b4, r00.1 58.57%
e10, b4, r00.3 62.41%

@ Coding example
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Results

Class: Accuracy:

Accuracy of the network: 62.41 %
Accuracy of plane: 54.2 %
Accuracy of car: 74.4 %
Accuracy of bird: 57.3 %
Accuracy of cat: 54.3 %
Accuracy of deer: 53.6 %
Accuracy of dog: 43.5 %
Accuracy of frog: 78.7 %
Accuracy of horse: 61.3 %
Accuracy of ship: 80.9 %

Accuracy of truck: 65.9 %
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Model optimization ((( o;

» Hyper-parameter tuning: learning rate, batch size, epochs, number of filters in
each convolutional layer

» Data augmentation: increase dataset size by rotating, flipping, scaling

» Transfer learning: using a pre-trained models and fine-tune with your dataset
>

>

Coding example

Regularization: dropout, L1/L2 regularization, and early stopping

Change architecture: find the optimal network architecture for a given problem
(use academic articles)
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Business applications (((

what, how, why, and for who

Discussion
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